Enzymatic processing of beta-dystroglycan recombinant ectodomain by MMP-9: identification of the main cleavage site.

نویسندگان

  • Manuela Bozzi
  • Rosanna Inzitari
  • Diego Sbardell
  • Susanna Monaco
  • Ernesto Pavoni
  • Magda Gioia
  • Stefano Marini
  • Simona Morlacchi
  • Francesca Sciandra
  • Massimo Castagnola
  • Bruno Giardina
  • Andrea Brancaccio
  • Massimo Coletta
چکیده

Dystroglycan (DG) is a membrane receptor belonging to the complex of glycoproteins associated to dystrophin. DG is formed by two subunits, alpha-DG, a highly glycosylated extracellular matrix protein, and beta-DG, a transmembrane protein. The two DG subunits interact through the C-terminal domain of alpha-DG and the N-terminal extracellular domain of beta-DG in a noncovalent way. Such interaction is crucial to maintain the integrity of the plasma membrane. In some pathological conditions, the interaction between the two DG subunits may be disrupted by the proteolytic activity of gelatinases (i.e. MMP-9 and/or MMP-2) that removes a portion or the whole beta-DG ectodomain producing a 30 kDa truncated form of beta-DG. However, the molecular mechanism underlying this event is still unknown. In this study, we carried out proteolysis of the recombinant extracellular domain of beta-DG, beta-DG(654-750) with human MMP-9, characterizing the catalytic parameters of its cleavage. Furthermore, using a combined approach based on SDS-PAGE, MALDI-TOF and HPLC-ESI-IT mass spectrometry, we were able to identify one main MMP-9 cleavage site that is localized between the amino acids His-715 and Leu-716 of beta-DG, and we analysed the proteolytic fragments of beta-DG(654-750) produced by MMP-9 enzymatic activity.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Beta-dystroglycan as a target for MMP-9, in response to enhanced neuronal activity.

Matrix metalloproteinase-9 has recently emerged as an important molecule in control of extracellular proteolysis in the synaptic plasticity. However, no synaptic targets for its enzymatic activity had been identified before. In this report, we show that beta-dystroglycan comprises such a neuronal activity-driven target for matrix metalloproteinase-9. This notion is based on the following observ...

متن کامل

Cleavage at the stem region releases an active ectodomain of the membrane type 1 matrix metalloproteinase.

MT1-MMP (membrane type 1 matrix metalloproteinase) is a membrane-anchored MMP that can be shed to the extracellular milieu. In the present study we report the primary structure and activity of the major soluble form of MT1-MMP. MS analysis of the purified 50-kDa soluble MT1-MMP form shows that the enzyme extends from Tyr112 to Val524, indicating that formation of this species requires a proteol...

متن کامل

The enzymatic processing of α-dystroglycan by MMP-2 is controlled by two anchoring sites distinct from the active site

Dystroglycan (DG) is a membrane receptor, belonging to the dystrophin-glycoprotein complex (DGC) and formed by two subunits, α-dystroglycan (α-DG) and β-dystroglycan (β -DG). The C-terminal domain of α-DG and the N-terminal extracellular domain of β -DG are connected, providing a link between the extracellular matrix and the cytosol. Under pathological conditions, such as cancer and muscular dy...

متن کامل

Suppression of tunicamycin-induced CD44v6 ectodomain shedding and apoptosis is correlated with temporal expression patterns of active ADAM10, MMP-9 and MMP-13 proteins in Caki-2 renal carcinoma cells.

CD44v6 has been shown to coordinate the activation of anti-apoptotic molecules as well as resistance to apoptosis. Here, we investigated CD44v6 ectodomain shedding in Caki-2 human renal carcinoma cells as well as its underlying mechanisms. Exposure of cells to tunicamycin (TM)-induced apoptosis was accompanied by cleavage of caspase-3, PARP-1 and CD44v6 ectodomain. TM-induced apoptosis was also...

متن کامل

Site Specific Cleavage Mediated by MMPs Regulates Function of Agrin

BACKGROUND Agrin is the key inducer of postsynaptic differentiations at the neuromuscular junction. The multidomain heparan sulfate proteoglycan is mediating via its N-terminal segment the interaction with laminin, whereas the C-terminal portion is responsible for Dystroglycan binding and clustering of the Acetylcholine receptor. Matrix metalloproteinases (MMP) are known to play essential roles...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • IUBMB life

دوره 61 12  شماره 

صفحات  -

تاریخ انتشار 2009